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\ Abstract

The objective of this study is to find the throttle controls
and trajectories which yield the minimum turning times for a high
performance aircraft with thrust reversal capability. The aircraft
remains in the vertical plane allowing only pull-up and split~s
maneuvers. A second-order parameter optimization method coupled
with the suboptimal control approach is used to solve the minimum
time-to-turn problem.

The results of the study found that trajectories restricted to
the vertical plane gave different results, and in at least one case
better results, than those not so constrained. The results also
indicate that depending on the maneuver performed, thrust reversal
is beneficial in reducing the minimum time-to-turn regardless »f
whether the aircraft's initial velocity is above or below corner
speed. Finally, the results demonstrate that thrust reversal can
be utilized for minimum time turns with resulting increases in

specific energy. °
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MINIMUM TIME TURNS CONSTRAINED

TO THE VERTICAL PLANE

I. Introduction

Background

In recent years, great interest has been taken in the minimum
time-to-turn capability of high performance fighter type aircraft..
This interest has been stimulated by the air-to-air combat require-
ments demanded of these aircraft. Such requirements include quick-
er and tighter turns, commanded nose pointing capabilities, and
increased responsiveness to the requirements of expanded weapon
system envelopes. Recent technological developments have contrib-
uted substantially to the efforts of improving the time required
for aircraft turns. These developments include thrust to weight
ratios greater than one, inflight thrust reversal capabilities,
increased angle of attack capabilities, and greater structural load
factors., With thrust to weight (T/W) ratios greater than one,
aircraft are now capable of accelerating in pull-up maneuvers.
Coupled with inflight thrust reversers, higher T/W ratios contribute
to turning performance because they allow the aircraft to maintain
corner velocity even with changes in altitude. Lastly, both the
improved angle of attack capabilities and load factor enhancement
aid in reducing the time to turn by providing increased 1lift
throughout the maneuver.

Over the years, numerous studies have addressed the minimum
time-to~turn problem. Each of these studies has had its own
unique problem solving approach resulting in some interesting

conclusions. In the most recent past, Humphreys, Hennig, Bolding,




and Helgeson in Ref (1), Johnson in Ref (2), and Peterson in Ref (3)
obtained results for minimum time turns for aircraft with and with-
out inflight thrust reversal capabilities. 1In each of the studies,
the aircraft trajectories were unconstrained. The unconstrained
aircraft equations of motion are not integrateable for solutionmns
confined to the vertical plane because the flight path angle causes
a singularity as it passes through 90 degrees. Also, when the
trajectories do not lie in the vertical plane, the lift vector ié
not utilized to its fullest potential. For these reasons, minimum
time turns constrained to the vertical plane are studied in the
belief that the planar constrained trajectory will yield the mini-
mum turning time due to the planar alignment of the 1ift, thrust,

and gravity vectors.

Statement of the Problem

The problem is to find the optimal throttle controls and the
resulting trajectories for a high performance fighter aircraft
performing minimum time turns constrained to the vertical plane.
The vertical plane restriction limits the aircraft to only the
pull-up and the split-s maneuvers. The maneuvers will begin at a
given set of initial conditions and will be completed when a given
set of end conditions have been met, Completion of the turning
maneuver in minimum time is of paramount importance. Throughout

the maneuver the aircraft will be subjected to typical limitations

including: 1) aircraft maximum angle of attack, 2) aircrait struc-
tural limitations, and 3) minimum and maximum throttle limitations.
For each of these trajectories the throttle controls will be varied,

while all other aircraft characteristics remain the same.




For this study, the identical aircraft as used in Ref (2) is
chosen to perform the prescribed maneuvers. In order to closely
compare with the results of the Johnson study, the same optimiza-
tiontechnique (the suboptimal control approach to the optimal con-

trol problem) will be employed.

Assumptions

In order to properly model the aircraft equations of motion,
the aerodynamic and thrust forces, and the atmosphere, certain
simplifying assumptions must be made. The aircraft maneuvers over
a flat earth with a constant gravitational acceleration. The
aircraft consumes negligible fuel during the performance of the
maneuvers, the thrust angle of attack eguals the aircraft angle of
attack. These assumptions are typical when describing the motion
of a point mass aircraft. The 1lift coefficient is a linear func-
tion of angle of attack up to the maximum angle of attack, and the
drag polar is a parabolic function. Due to the small change in the
density ratio as a result of changes in altitude during turns, the
maximum thrust available throughout the turn is constant. The
aircraft performs in the Standard Atmosphere as defined by NASA
in Ref (4). Finally, it is assumed that for purposes of modeling
the aircraft maneuvers, the aircraft thrust control can change
instantaneously. This assumption is considered valid since this
type of technology is in the developmental stages.

The following sections will discuss the formulation of the
constrained minimum time-to-turn problem., Section II defines the
minimum time-to-turn problem in three dimensions and the particular

case of a turn in the vertical plane. Section III details the




simplifying characteristics of the suboptimal control approach to
the optimal control problem, Section IV outlines the application
of the suboptimal control approach to the minimum time-to-turn
problem. Finally, Sections V and VI will discuss the results of

the study and conclusions, respectively.
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II, Problem Definition

This section defines the minimum time-to-turn problem, It
examines the turning maneuvers and the equations of motion which
generate those maneuvers. The aircraft characteristics, control
variable constraints, and atmosphere model complete the problem
definition. The following paragraphs discuss each of these items

in depth.

The Maneuver

The aircraft turns are constrained to the vertical plane. This
limits the aircraft to two basic maneuvers, the pull-up and the
spl“t-g, The split-s maneuver is accomplished by rolling the air-
craft to the inverted position and performing an inverted pull-up.
Each maneuver has two initial velocities; one case above corner
velocity, and the second below the corner velocity. The four
maneuvers will be refe.red to throughout the remainder of the thesis
as the split-s(low velocity) case, the split-s (high velocity)
case, the pull-up (low velocity) case, and the pull-up (high vel-
ocity) case. Each of the maneuvers begins with the aircraft fly-
ing straight and level (€§i=0). The maneuver is complete when
the aircraft once again has reached straight and level flight
(€)£=O). The initial and final maneuver conditions appear in
Table 1. Also appearing in Table 1 are two data sets chosen from
the Johnson study for data comparison purposes. Because all of
the cases begin at an altitude of 13990 ft, the gravitational
acceleration at that altitude, g=32.131 ft/sec®, Ref (4), will be

used throughout the maneuvers.
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over a flat earth as derived in Ref(5:48-49) are:

Maneuver v, (ft/sec) by (ft) 0, (;f
Split-s(LV) 621 13990 0 %)
Split-s(HV) 903 13990 ) 0
Pull-up(LV) 621 13990 0 o
Case 4 621 13990 0 0
Pull-up(iV) 903 13990 0 0
Case 5 903 13990 0 0

Table 1. 1Initial and Final Conditions

The equations of motion for a point mass aircraft in flight

(1)

(2)

(3)

(&)

6)

W




Assuming that the maneuver performed is a coordinated turn allows
Q=0., Additional assumptions are that the thrust angle of attack
is equal to the aircraft angle of attack, aad that the angle of
attack is small, These assumptions imply that sin? =0, cos% =1,

£ =o¢,sinX=oX, and cose{=1l, The equations of motion then become:

% =\Vcos Ocos Y %)
\.I-‘-'\/COS@SN "P (8)
h= Vsin©

(9)
ST D
\j-g_w W-S‘Ne (10)
e=%f_[i5o<+—a— cos p-cos8 (11)

Veos© \\W \VY/ .

§ - qsiNg [T L (12)

The flight of a point mass aircraft is now constrained to the
vertical plane to allow only the pull-up and the split-s maneuvers,
This constraint leads to further simplification of the equations

of motion, For flight in the vertical plane, there is no motion
in the x-y plane indicating that y=constant and &:O. Similarly,
the aircraft is not permitted longitudinal maneuvers out of the

x-h plane which forces ¢=O. Y =0, sin¢=0, sin‘f:O. cos ¢=1,

and coa‘f:l. The equations of motion are now reduced to the

desired form for flight in the vertical plane:
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earth fixed coordinate frame.,
reduced to x, h, V, and EB.

are now limited toof and T,

Aircraft Characteristics

of data comparison.

the thrust-to-weight ratios.

forces in the equations of motion,

X =\cosE (13)
}.\ = \/S\'Ne (14)
N =alX-D _g;

\ = %(w w SiN 9) (15)
é:l IOQ-f-_L_.._c_os@ (16)

The split-s maneuver is generated by placing a negative angle of
attack (implying gb:lSO degrees) into these equations. These

equations model the motion of the aircraft with respect to an

The state variables have been

The control variables for the maneuver

The aircraft chosen to perform the selected maneuvers is
identical to that used in previous work, Ref (2), for the purpose
The characteristics of the aircraft which

require development are the lift-to-weight, drag-to~weight, and

Lift and drag are the two aerodynamic

These forces can be expressed in

terms of atmospheric and aircraft parameters as:

V'SC,

L= S
~ e.

D = fEVSC,

(17)

(18)

2
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The 1ift and drag coefficients are:

C’\-z CLo(o{ (19)
>
Cb = CDO+KCL (20)

In the equations of motion, the lift and drag forces are expressed
as non~dimensional lift-to-weight and drag-to-weight ratios. When
equations (19) and (20) are incorporated into equations (17) and
(18) these ratios become:

L G’\/
W ? S C\_,‘ (21)

() GV S (C'Do+ KC 3 (22)

VJ

The aircraft parameters can be substituted into these equations

in order to obtain numerical values. These aircraft parameters

are:
CL°‘=5.0 5=237 sq ft
CDo =.02 & max = .2 radians
K =,05 (T/w)max = 1.5
W =12,150 1b (L/h)max = 7.22

The thrust-to-weight ratio (T/W) is also required for use
in the equations of motion, It is represented as a function of

the maximum thrust available (Tmax) and a thrust control variable,

™).

A
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The thrust-to-weight ratio becomes:

L VWO I) 'w (23)
WoowW W /max

vhere A has limits of -.6 and 1.0.

Aircraft/Control Variable Constraints

The aircraft is subject to three basic physical constraints
during its vertical plane maneuvers. These constraints include
a maximum angle of attack, a maximum structural load factor, and

minimum and maximum thrust limitations. These constraints are:

ot £ Ly (24)
L /L
W T \W /max (25)

T, 2 T=2Th (26)

N

The thrust control constraint, equation (26), can also be expressed

in terms of the thrust control variable:

(n 4’“"5/“'"“_ (27)

M —

The Atmosphere

The atmosphere model assumed in the solution of the problem

has density ratio.CT. expressed as:

4
N\ Fe LW
6"‘"??—:].]" ~ Tt%?._h (28)

10




where

P =.00a218 swoes [er®

Qo™ 32174 er/sec
T. = 518.6.88 °R
N o= L3S

R=1s F‘\'>/S€C_;— R




I1I. The Suboptimal Control Problem

(Ref (6))

The minimum time-to-~turn problem is an optimal control problem.
The optimal control approach is an inherently difficult and com-
rlex solution method. Because the optimal control problem can be
hard to solve, ways of approximating the optimal solution exist,
The suboptimal control problem is a distinct simplification to the
optimal control problem. The approximation of the control variables
reduces the problem to one of parameter optimization., The form-
ulation of the suboptimal control problem is developed in the

following paragraphs.

Suboptimal Control Problem Formulation

The suboptimal control formulation requires that the control
variables be approximated by a mathematical function which is
competely characterizea by a finite number of parameters, This
approximation method assumes that some knowledge of the type of
control required is available. The parameters describing this
mathematical function will be expressed as the vector B. The

control variables are then expressed as

U=U(t,ﬁ3 (29)

where U can be any functional form., If A denotes the vector of

unknown parameters,

A=\_{-¢ ;B ! (30)

12




then the integration of the differential equations (equations of

motion), (13) thru (16), subject to the prescribed initial, final,

and control variable constraintes leadsto the functional relation,

X_; = X.g (AB . (31)

Because the performance index and final condition constraints

depend only on tf and Xf. and hence A, the optimal control problem
has been reduced to one of parameter optimization. The problem
now consists of merely finding the unknown parameter vector A

which minimizes the performance index,

G-’G(A}"ﬁ; (32)

subject to the final condition constraints

N(A\ =0 (33)

Solution of the Suboptimal Control Problem

If the augmented performance index, F, is defined as

F(Av)=GA+Y M(R) o

then the only constraints which the vectors A and ) must satisfy
are the result of requiring the first variation to be zero., These

conditions are:

13




-
F& <A v) =0 (35)

M(A) =O 6)

Hull and Edgeman, Ref (6), formulate a second-order parameter
optimization technique specifically for application to the sub-
optimal control problem. The technique uses second derivative
information in order to determine how to change the parameter
vector A and the lagrange multiplier ")) such that the first varia-

tion conditions are driven to zero. These changes to A and <) are:

S:\F(MAF&:M;)—‘(-?I"\AFMZI 4 QM) (37)
JA" = M-\<p€:+ MI&;} (38)

where P and Q zre scaling factors which are used to control the
optimization process. The iterative algorithm for incrementing A
and ) is easily programmed as follows:

1. guess A and VY

2. integrate the differential equations and determine X

f

3. compute M, MA’ M AY and F

AA? F AA

4, compute §A and §9 with selected values of P and Q
5. check convergence criteria

6. set A=A+S A, 9=9+§vand go to 2

The procedure is greatly simplified over the optimal control prob-

lem but it does require some skill in initially choosing 4, P,

14




and Q, Hull and Edgeman, Ref (6), were able to calculate the initial

value of 7)) from a gradient approach

v = (Y | (m-mer) o

However, the procedure for selecting P and Q is not as obvious.
The constants, P and Q, are initially introduced in the 63)and
the &A conputations. The constants y) and A are introduced to
control FA? and M, so that FAT and M (the first variation of the
augmented performance index) both go to zero, Hence, one method
of selecting P and Q is to choose them such that the norms of FAT
and M always decrease. Another approach is to select P and Q such
that the norms of dEu and §A fall below some criteria. However,
FAT must ~till be decreasing continuously, With either method of
P and Q selection, it is required that P and Q equal one in the
final stages of convergence,

There are two possible convergence criteria. In one case the
norms of FAT anf M are each below some specified convergence
tolerance., The second potential criteria is similar to the first;

however, the norms of J-A and d9 are compared to their own specified

tolerance,

15
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Iv, Application of Suboptimal Control to the Minimum

Time to Turn Problem

Adaptation of the suboptimal control algorithm, as outlined in
Section III, to the minimum time to turn problem is a relatively
straightforward procedure, In order to prepare the problem for

solution on the computer, a number of modifications must be com-

pleted. First of all, the aircraft equations of motion (differential

equations) must be manipulated into a numerically integrateable
form, Similarly, the mathematical form of the control variables
must be defined, and the control variable constraints must be
incorporated into the solution process. The numerical methods
utilized for first and second-order derivative information must
also be specified. Lastly, the convergence criteria and initialie

zation of the unknown vector A must be established,

Aircraft Egquations of Motion

Because the final time of the maneuver is not initially fixed,
integration of the differential equations, (13) thru (16), with
respect to non-dimensional time simplifies the numerical integra-
tion process. Therefore, the equations will be integrated over

the interval

o=M™=1 (40)

where

T=— (41)

16
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The transformation of the differential equations into a non-dimen-
sional form is accomplished through the use of the deivative chain

rule. This applicationyields

S(,é_\ﬁ-_-il(_d'_}:é}_.l_ (42)
dt d% dt d™ tg

and finally
dx :
N ‘{L_p X (43)

Therefore, the aircraft equations of motion, (13) thru (16), can
be transformed to non-dimensional form simply by multiplying the
right side of the equation by the final time, tf.
The known aircraft and atmospheric parameters can be substituted
into equations (21), (22), (23) after they are non-dimensionalized.
Then, the constant of gravitational acceleration and equations (21),

(22), and (23) are substituted into the aircraft equations of motion,

yielding the differential equations as a function of A :

% = t{:\{COS © (44)
ad"‘rt =‘L_¥_ S\Ne\/ (45)
4
diﬂi,r 43.\%65'&-\1‘[(0000% .@qasoZX‘.’ 0000061 hﬂ&m&'e (46)

d@ -t (31;;‘%%517‘04*20001 1N (30- .00000(0‘\\‘\3“‘3@9] (47)
4t

17
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Mathematical Description of the Control Variables

With the equations to be integrated constrained to the interval
(0,1), the mathematical form chosen to describe the control vari-
ables is a series using Chebyshev polynomials, also defined on the
interval (0,1)}. The Chebyshev polynomials, Tj’ represented as

functions of ™ for j=1 to j=4 are:

1,1 (48)
T=an-1 (49)
T;= 8"(3* 8'\‘ + l (50)

Te=2ar 48 e 18-1 . o

The control variables are then described in series form by

NPX

n=\
NA

<= 2 Duln (53)
ms=|

where C and D are the unkiown coefficients and part of the vector
A. NPI and NA are the number cof tne unknown coefficients for N\~
and o , respectively.

Constraints on the Control Variables

As discussed in earlier sections, physical aircraft character-

istics limit the performance. These limitations are applied to

18




the problem in the form of control variable inequality constraints,
The thrust control constraint initially defined by equation (27)

becomes

-bznr=10 (54)

The minimum value of ~.6 represents an estimate of the maximum
reverse thrust available in a turn,

Two separate constraints exist for the angle of attack. The
dividing line between these two constraints is an altitude related
parameter called corner velocity, Vc. Corner velocity is the vel-
ocity at which the 1lift coefficient required for flight at maximum
load factor is equal to the maximum 1lift coefficient. Based on
this definition and the related aircraft parameters, the corner

velocity becomes

|
\/ b2bbO. b h
C

= (55)
<Kmav O

or

"/z_
V.= 5§591%5 G (56)

When the aircraft flies below corner velocity, the limiting cona

straint simply becomes the angle of attack limitation

o %< .ol (57)

19
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Above the corner velocity the aircraft is constrained by the struc-—

tural load factor
. >
=< (‘;j (58)
AW MAY
The solution of equation (58) for o4 is

GebO.
G-'V?' (59)

o< =

when the known values of the parameters are incorporated. These two

constraints as a function of velocity can be seen pictorally in

Figure 1,
O( = “MM
=
VewoeiTy
Figure 1. Angle of Attack vs, Velocity

(Ref (2))

The division on the angle of attack constraint suggests a
method for determining which constraint applies. It is only
required to monitor the value of the aircraft velocity throughout
the integration process. The angle of attack calculation depends
on whether the aircraft velocity is above or below the corner
velocity for that altitude,

The method for thrust control is slightly more involved, When
it is determined that the thrust control has at any time intersect-

ed its maximum or minimum value during integration, intermediate
20
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times, '\“l,'\'a, etc., must be introduced to allow the equations

to be integrated from one point of boundary intersection to the

next. This techaique ensures that the thrust control never vio-
lates the constraints,

It is most important at this point to discuss the time during
which the control variables have exceeded their allowable limita-
tions for the entire trajectory. The action required during the
time that the control variables have exceeded their constrained
value is more easily a2xplained by example. Consider the thrust
control, if the thrust control () is at its maximum value for
the entire trajectory and if the FA term corresponding to that con-
trol is negative, then in order to alter the coefficient so as to

drive the corresponding ¥, term to zero, it is required that the :

A

coefficient exceed its maximum allowable value. In similar fashion,

if A is at its minimum value and the corresponding F, term is

A

positive, then the Ay coefficient must fall below its minimum

allowable value. In either case, the control variable is no long-
er a parameter in the optimization process because its value is
constant (upper or lower limit) and its corresponding F, term
cannot be driven to zero as desired., The fact that the FA term

for that control is not zero is no cause for concern. The minimum
of the performance index with respect to that control occurs on

the boundary and for a boundary minimum the FA term is not supposed
to be zero. The ultimate solution to this problem is to eliminate

the coefficient (4}) in order to calculateé§> and §A without

its influence.

21




Numerical Derivative Computations

To compute a—-p and A\A, it 1is necessary to compute the derivative

matrices M M

A Maps FA, and FAA' The latter two can be evaluated

from the expressions:

FA = G\a ¥ '”TMA (60)

FM=G\M +V MAA (61)

where G, is known analytically (since G=tf, Gt =1, and all other
f

GA=°) and GAAzo. Therefore, the only unknowns requiring calcula-~

tion are MA and MAA'

In order to calculate the end constraint value, M, and its
derivatives MA and MAA’ the equations of motion must be integrated
to yield Xf(A) from which M can be calculated directly. The M,
and MAA matrices come from a central difference numerical technique.
Let An represent the nominal value of the individual elements of

A; then, the equations of motion are integrated to arrive at the

nominal value of M. The first derivative, MA,is determined by

first perturbing An by some &n positively and then negatively,

AN+=A,~\ +&N (62)
An- = Ay -8y (63)

where d\n is some small positive value to be discussed later,

Integration of the equations of motion using these perturbed
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values, An+ and An-‘ results in M+ and M_, respectively. The

MA derivative is then calculated using the central difference
n

representation

f“\ "F{.. §
MA,.{ = 5{“ + 0/<6.N3 (64)

where @'(5':) represents an error term of order of magnitude 6;12.

The MAA matrix is determined similarly; however, two elements An

and Am must be perturbed both positively and negatively to yield

M++, M__, M+_, and M . after integration. The central difference

representation for the MAA matrix are

ﬂ-(-'o'l +M- A
MANA.\‘ 6-':\ i +8’<&~«3 (65)

N

if n=m

a2 Mot
Al 48u0u

065 (o)

if n¥m. The greatest accuracy in the central difference method is
obtained by using the smallest A_n and ‘S_m possibley; if é—n and
J}lare small enough, the error terms can be ignored. The
selection is a critical matter in the integration process. Care
must be taken to ensure that the numerators of equations (64) thru
(66) are not of the same order of magnitude as the truncation
error associated with integration., The d‘ chosen for the central

difference technique is
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r—

_—

&= (pea) A, | (67)

or if the absolute value of J;lis smaller than DELTA , then

£, = DELTA (&)

where DELTA is a given small positive number, Therefore, érn is
controlled by the value of DELTA. This study found that DELTA

equal to 10-4 was an appropriate value although occasional manip-
ulation to 10~ and 10~° was required to stabilize the optimiza~

tion process,

Convergence Criteria

The scaling factors P and § control convergence of the iterative
process. 1n order for the method to ultimately converge, both P
and Q must equal one. During this study it was found that Q could
be left equal to one throughout the iterative process. The value
of P started at lO‘h and increased by a factor of 10 as long as
the norm of FAT was continuously decreasing for the previous value

of P, Once P equals one, the convergence criteria becomes:
£ -8
Mil =< \O (69)

\|sa||=10 )

2k




Initializing Control Variables

With the aircraft trajectories constrained to the vertical
plane, the bank angle control is removed from the problem, leaving
only angle of attack and throttle as the maneuver controls. Since
1lift turns the aircraft, the initial angle of attack is the maximum
value as described in Figure 1. The initial throttle control
depends on whether the maneuver is a pull-up or split-s, and whe-
ther the initial velocity is above or below corner velocity,

Since the quickest turns will be made at corner velocity, the
general philosophy used in selecting the initial throttle control
i, to choose that throttle which will bring the aircraft to corner
velocity and hold it there throughout the turn, The set of man-
euvers are initiated with a constant throttle control. Once each
case has converged on a solution, an additional coefficient is
added to the control polynomial until there is no improvement

in the turning time. Each of the four maneuvers is handled in

the same way. The four maneuvers in this study are the pull-up
high velocity), the pull-up (low velocity), the split-s (high
velocity), and the split-s (low velocity), where high velocity
refers to initial velocity above corner velocity, and low velocity

refers to initial velocity below corner velocity.
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V. Results of the Study

Individual Maneuvers

The results of the throttle control for each of the four man-~
euvers are covered separately in the following paragraphs. The
results of angle of attack control are discussed first because the
results were identical for all four maneuvers., As expected, the
aircraft generates as much lift as possible for minimum time turns
in the vertical plane. In order to generate this lift, the aircraft
remains at its maximum angle of attack limit throughout each of
the four maneuvers for all throttle excursions. This limit is
«2 radians for velocities below corner velocity and the angle of
attack for maximum load factor for velocities above corner velocity,
The interesting point of the angle of attack optimization process
is that the corresponding FA term was found to be negative in all
cases indicating that ‘he coefficient desired to be greater than
its maximum allowable value.

The results for the low velocity split-s maneuver are listed
in Table 2 and shown in Figures 2 thru 5. Table 2 lists the
optimal coefficients for the various throttle control polynomials
and the corresponding Lagrange multipliers. From Table 2 it can
be seen that the best turning times are obtained for thrdttle
controls of quadratic and cubic order., The improvement in the
turning time with cubic throttle control over quadratic control
is negligible (less than one tenth of one percent). The quadratic
control shows an improvement in turning time of 3% and 4% over
linear and.constant throttle controls, respectively. Figures 2a,

3a, 4a, and 5a show the altitude-velocity profiles for constant,
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linear, quadratic, and cubic throttles, respectively. 1In each of
the figures, the dotted line originating at to and ending at tf
is the aircraft irajectory, while the solid line labeled Vc is

the corner velocity as a function of altitude., As stated earlier
in the text, the throttle control which can bring the aircraft to
corner velocity as quickly as possible and hold it there will give
the minimum turning times. The truth of this statement is readily
apparent in Figures 2a, 3a, 4a, and Sa., As the order of the
throttle control increases the aircraft's ability to maintain cor-
ner velocity improves noticeably and the time to turn decreases
appropriately. The maneuver in the x~-h plane for each of the four
throttle control polynomials appear in Figures 2b, 3b, 4b, and S5b.

The trajectory in each figure begins at to and is completed at tf.

Each of the four trajectories are bacically identical in the x~h
plane. There are minimal differences in the final altitude and
downrange distances. The difference in final altitude among the
four throttle controls is only 68 ft with the minimum being
10,001 ft for the linear throttle and the maximum being 10,069 ft
i for th; constant throttle case, ¥Final altitudes for quadratic

f ang cubic throttle controls fell between these two values., Conm=-
parison of final downrange distances show that the values ranged
from -289 ft for the cubic throttle case to -390 ft for the linear
throttle case while constant and quadratic throttle controls were
=335 ft and -301 ft, respectively. The aircraft throttle controls
which lead to the trajectories for the low velocity split-s man-
euver are shown in Figures 2¢, 3¢, bc, and S5c. Figure 2c shows that

a small value of constant throttle (" =-.0579) was required to

40
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perform the maneuver in minimum time. For the linear throttle

control case (Figure 3¢), it was found that a small positive initial
throttle control,q =.24, was required to drive the aircraft toward
corner velocity. The throttle then decreased linearly to a minimum

value at approximately -.4 at the maneuver's completion. For the

quadratié and cubic throttle controls, Figures 4c and 5c, the throttle

controls were very similar with the cubic throttle control drop-

ping off at the maneuver's comgetion. Conclusions regarding the best

throttle control for this maneuver will be made in the Summary
of Results,

The split~s (high velocity) maneuver began its trajectory with
an initial velocity of 903 fps which is well above corner velocity
of 694 fps, Table 3 lists the optimal coefficients for the split-s
(high velocity) maneuver while Figure 6 displays the results. It
was found that with the combination of high initial velocity and the
split-s maneuver the aircraft was unable to decelerate to corner
velocity even with full reverse throttle, ¥~=-.6. This trajectory
is displayed in Figure 6a. Figure 6b shows the trajectory in the
x-h plane., This figure shows that while the high velocity split-s
maneuver loses over 1300 ft more in altitude than the worst low
velocity split-s case, it finishes the maneuver over 600 ft far-
ther downrange. The throttle control for this maneuver is display-
ed in Figure 6¢c. Table 3 does not list a value for the Lagrange
multiplier for this maneuver. The reason for this is that the
aircraft was physically constrained to both its maximum angle of
attack limit and its minimum throttle control constraint., Due to

this, the problem was reduced simply to one of calculation of the
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end condition with constant aircraft controls.

For the low velocity pull-up maneuver, the optimal coefficients
are listed in Table 4, It was found that the minimum time for
this maneuver, tf=9.7763 sec, results from a constant throttle con-
trol of i =1.0. The constant throttle control allowed the air-
craft to accelerate vertically in the maneuver, however it did
not attain corner velocity until the maneuver was completed.
Figure 7 shows the trajectories and throttle control for the low
velocity pull-up maneuver. From Figure 7a it is concluded that
even though the aircraft has the capability of accelerating in
the pull-up maneuver, the low initial velocity and the effect of
gravity do not allow it to accelerate to corner velocity. Figure
7b displays the pull-up (low velocity) maneuver in the x-h plane.
The figure shows that during the maneuver the aircraft gained
over 4200 ft of altitude and compkted the maneuver 249 ft down~
range. Figure 7c shows the throttle control required for the
maneuver,

The high velocity pull-up maneuver is shown in Figures 8 and

9. The optimal coefficients are listed in Table 5, Beginning

the pull-up maneuver with an initial velocity much greater than
corner velocity allowed for a number of interesting throttle con-
trol solutions. Figures 8a and 9a show the altitude-velocity
profiles for the constant and linear throttle controls, respec-~
tively. It was found that for the constant throttle case a mini-
mum turning time of 11.15 s2c was obtained with a small positive
throttle control, 4 =.3246, as shown in Figure 8¢c. When the

throttle control was allowed to go to a linear control some in-
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teresting results were obtained. As the optimization process pro-
ceeded, the throttle began to converge on a solution that went from
full reverse throttle to full forward throttle with infinite slope.
This is a bang~bang control and the only parameter to describe it
is the time at which the control switches from full reverse to
full forward throttle control. The results of this control are
shown in Figure 9. Figure 9a displays the altitude-velocity pro-
file which results in a time to turn of 10.171 sec, a 9% improve-
ment over the constant throttle case. The optimal time to switch
from reverse to forward throttle was found to be 3.3923 sec, This
throttle control is shown in Figure 9¢. Figures 8b and 9v compare
the x-h plane trajectories for the two throttle controls and it is
ceen that the linear throttle control completes the pull-up man-
euver in over 900 ft less altitude and over 500 ft less downrange
distance than the constant throttle control. When the optimiza-
tion process was allowed to go on to higher order throttle controls
it once again converges to the bang-bang control.

Each of the four mareuvers has been discussed separately. The
following section will make some general comparisons between each

of these maneuvers.

Summary of Results

In Table 6 all of the individual maneuvers performed in this
study as well as the data from previous work (Table 1) are listed
for comparative purposes. The minimum time to turn as well as
aircraft specific energy will be discussed in this section,

Specific energy can be calculated from the expression
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E=<h+5§%>{t (71)

where g is the gravitational acceleration at the initial altitude
(g=32.131 ft/secz). The best overall minimum time to turn is

the low velocity split-s maneuver with cubic throttle control.

The final time is 9.271 sec; however there is a specific energy
loss of 3484 ft. The minimum specific energy loss for this man-
euver is with the quadratic control, Here the loss is limited to
2818 ft, a 19% improvement over the cubic throttle. Due to the
minimal difference in Lurning times between the quadratic and the
cubic throttle controls, it is evident that the most efficient way
to perform the low velocity split-s is with quadratic throttle
control., The only other maneuver where a choice can be made for
the relative efficiency of the turn is theAhigh velocity pull-up
maneuver, and it is clearly evident that the linear throttle case
is superior., In each of the two remaining cases, high velocity
split-s (tf=10.782 sec) and the low velocity pull-up (tf=9.776 sec),
the specific energy results were an 11,448 ft loss and a 6949 ft

gain,respectively.
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VI. Conclusions and Recommendations

Based on the results as listed in Table 6, a number of con-
clusions may be made regarding turning maneuvers performed in the
vertical plane,

1. Trajectories restricted to the vertical plane gave
different results, and in at least one case better
results, than those not so constrained.

2. For the split-s maneuver, thrust reversal is beneficial
in reducing the minimum time to turn regardless of
whether the aircraft's initial velocity is above or
below corner velocity.

3. For the pull-up maneuver, thrust reversal is beneficial
in reducing the minimum time to turn only if the aircraft
initial velocity is above corner velocity.

4, Although the split-s maneuver minimizes turning time,
comparison of pull-up and split~s maneuvers in the

. vertical plane shows that for the split-s maneuver,
specific energy is severely penalized when minimum
turning time is desired.

Comparisons are made to the results of previous work, Case 4
and Case 5, in Ref (2). Comparison of the low velocity pﬁll-up
maneuver to Case 4 shows that although the pull-up required 2%
more time to complete the maneuver, it provided for a 25% improve-
ment in specific energy. Similar comparison of the high velocity
pull-up with linear throttle control to Case 5 showed that the
pull-up maneuver improved turning time by 4% and inproved specific

energy by 300%. As evidenced by these comparisons and the data
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summarized in Table 6, it can be stated that trajectories constrain-

ed to the vertical plane can be optimal minimum time to turn sol-
utions. It can also be stated that thrust reversal can be used
for minimum time turns with resulting increases in specific energy.
There are two recommendations that can be made regarding fur-
ther study of the minimum time to turn problem. These recommend-
ations are:
l. The closeness of the turning times indicate thﬁt for
this aircraft it doesn't make any difference in which
plane (straight lines as mapped in the y-h plane) the

minimum time turn is performed, each of the cases have

turned out fairly close. It would be interesting to deter-

mine the minimum turning times for all of the different
planes,

2. The development of a set of aircraft equations of
motion which can transition from vertical plane motion
to 3-D motion with no problems is required in order
to do accurate performance studies of high performance
aircraft. The use of quaternions which are used in
inertial navigation might be a big step in this direc-

tion.
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